Formal Languages

Expressing problems and solutions

Problem:

Answer:

 $67 * 4.5 = ?$ $67 * 4.5 = 301.5$

Problems and instances

Problem:

 $67 * 4.5 = ?$

An instance of the MULT problem

Problem:

The problem: MULT

Given two numbers, x and y, what is $(x * y)$?

Languages and Computation

- Problems and solutions are characterized by symbolic strings.
- Computation is
	- Determine membership of a set of string
	- Mapping between sets of strings
- Algorithms are mappings from problem space to solution space
- Implementations are mappings from finite strings to finite strings
	- Finite Automaton (not covered in this course)
	- Turing Machine
	- Lambda Calculus

Definitions

- An alphabet is a finite set of symbols, written as Σ .
- \bullet A string is a finite sequence of symbols from Σ.
- The (infinite) set of all possible (finite length) strings is written as Σ^* .
- A language is a subset of Σ^* .

String Encoding

Thesis:

Given any mathematically defined decision problem P, there exists a string encoding of all of its instances.

ENC : instances(P) $\rightarrow \Sigma^*$

Algorithm (decision procedure)

Given an encoding **Enc** of a decision problem P, an algorithm is a string processing function:

alg : Σ* → boolean

such that for all instances $x \in A$, we have

 $P(x) = alg(Enc(x))$

Why only decision problems?

- We definitely want to do more than decisions.
- It turns out that general purpose computation is only superficially more complex than their decision counter parts.
- Same definitions, theories, and computational results apply to both general purpose computing and decision problems.

Decision counter parts of general purpose computing

Integer multiplication

- \bullet Input: x, y
- \bullet Output: $x * y$

Verification of integer multiplication

- \bullet Input: x, y, z
- Output: check if $z = x * y$

Language and decision problems

For every decision problem P there exists a language L(P) defined as the encodings of "good inputs".

$$
L(P) = \{ Enc(x) : x \in B \}
$$

call the decision problem by a different name: *recognition of the language.*

Some decision problems and their languages

PRIME:

- Decision problem: is *x* a prime number?
- Language: the (infinite) set of all prime numbers

Syntax checking of HTML?

- Decision problem: Is this HTML valid?
- Language: the set of all valid possible HTML pages

Multiply

- Decision problem: is *z* the produce of *x* and *y*?
- Language: the set of all possible triples (*x*, *y*, *x***y*).

String encoding of inputs: examples

- We work with only three symbols: $\Sigma = \{ 0, 1, \ldots \}$
- PRIME: we use the binary representation
	- Input: 17
	- Encoding: 10001
- MULT: we need to encode a triple (x, y, z) . This can be done using the separator symbol to join $Enc(x)$, $Enc(y)$, $Enc(z)$
	- \circ Input: $4 * 5 = 20?$
	- Encoding: 100_101_10100

String Processing Methods

- \bullet List all elements of $L(P)$
	- Impractical for large languages
	- Impossible for infinite languages (like PRIME)
- Use regular expressions
	- This corresponds to a state machines, also known as finite state automata (FSA)
	- Most useful languages cannot be described by regular expressions (like PRIME)
	- Did you know that programming language syntax is not regular?

String Processing Methods

- Use context free grammar (CFG) (not covered in this course)
	- This corresponds to FSA with a stack storage
	- Most programming languages can be decided by CFG

● Turing Machine

- This corresponds to FSA with a movable HEAD and a tape storage
- All Python-decidable problems can be recognized by TM